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Exercises: 2.12, 5.1, 5.4, 5.8, 5.9, 5.10, 5.12, 5.13, 5.14, 5.16 of Atiyah-MacDonald, and one
extra exercise from Professor Pappas

Proposition 0.1 (Exercise 2.12). Let M be a finitely generated A-module and φ : M → An

a surjective homomorphism. Then kerφ is finitely generated.

Proof. Since An is a free, and hence projective, A-module, the short exact sequence

0→ kerφ→M → An → 0

splits, so M ∼= An ⊕ kerφ. Since M and An are finitely generated, so is kerφ.

Proof. (Alternate proof of 0.1) Let e1, . . . , en be a basis of An, and let u1, . . . , un ∈M so that
φ(ui) = ei. Let N ⊂ M be the submodule generated by u1, . . . , un. Since M/ kerφ ∼= An,
every element of M can be written as linear combination of the ui plus some element of φ,
thus M = N + kerφ. This sum is direct since if x =

∑
aiui ∈ N ∩ kerφ, then

φ(x) =
∑
i

aiei = 0 =⇒ ai = 0 ∀i =⇒ x = 0

since e1, . . . , en is a basis of An. Thus M = N ⊕ kerφ. Since M,N are finitely generated,
kerφ is finitely generated.

Recall for the next proposition that the sets

V (I) = {p ∈ specA : I ⊂ p}

are the closed sets of the Zariski topology on specA, where I ⊂ A is any ideal.

Lemma 0.2 (for Exercise 5.1). Let f : A→ B be a ring homomorphism, with induced map
f ∗ : specB → specA. For any ideal I ⊂ B,

f ∗(V (I)) ⊂ V (f−1(I))

with equality if f is integral.
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Proof. The first inclusion is immediate: if p ∈ f ∗ (V (I)), then I ⊂ p, so f−1(I) ⊂ f−1(p).
Now we show the reverse inclusion, assuming f is integral. Let p ∈ V (f−1(I)), so

f−1(I) ⊂ p. We need to show that p ∈ f ∗(V (I)), so we need to find q ∈ specB so that
f ∗(q) = f−1(q) = p. Consider the factorization

A f(A) B
f

If a ∈ ker f , then f(a) = 0 ∈ I, so a ∈ f−1(I) ⊂ p. Thus ker f ⊂ p, so by the ideal
correspondence (Proposition 1.1 of Atiyah-MacDonald) and a remark on page 9 of Atiyah-
MacDonald, p corresponds to a prime ideal p′ of f(A), with f−1(p′) = p. Since B is integral
over f(A), by the going-up theorem (Theorem 5.10 of Atiyah-MacDonald), there exists
q ∈ specB so that q ∩ f(A) = p′. Then

f−1(q) = f−1
(
q ∩ f(A)

)
= f−1(p′) = p

We include the following commutative diagram as a visual aid.

A f(A) B

p p′ q

f

Proposition 0.3 (Exercise 5.1). Let f : A → B be an integral homomorphism of rings.
Then f ∗ : specB → specA is a closed mapping.

Proof. Any closed subset of specB is of the form V (I), and by Lemma 0.2, the image of
V (I) under f ∗ is V (f−1(I)), which is closed.

Exercise 5.4. Let A ⊂ B be a subring, with B integral over A. Let n ⊂ B be a maximal
ideal, and m = A ∩ n the corresponding maximal ideal of A. In general, it is not the case
that Bn is integral over Am. We provide an explicit counterexmple, following the hint in
Atiyah-MacDonald.

Let k be a field, B = k[x], A = k[x2−1]. Let n be the maximal ideal generated by (x−1),
and m = A∩n. Note that m = (x2− 1), which is the unique maximal ideal of A, so Am = A.
We can write Bn as

Bn =

{
f

g
∈ k(x)

∣∣∣∣ (x− 1) - g
}

In particular, Bn 6= B. We have inclusions

Am = A ↪→ B = k[x] ↪→ Bn

Since k[x] is integrally closed (see comment on pages 62-63 of Atiyah-MacDonald), Bn cannot
be integral over k[x]. Thus Bn cannot be integral over Am.
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Proposition 0.4 (Exercise 5.8i). Let A be a subring of an integral domain B and let C be
the integral closure of A in B. Let f, g be monic polynomials in B[x] so that fg ∈ C[x].
Then f, g ∈ C[x].

Proof. Let f, g ∈ B[x] be monic with fg ∈ C[x]. Let K be the fraction field of B, and
let K be an algebraic closure of K. Note that by Corollary 5.5 of Atiyah-MacDonald, C is
integrally closed in K. Over K, f, g split into linear factors,

f(x) =
∏
i

(x− ξi) g(x) =
∏
j

(x− ηj)

Then ξi, ηj are roots of fg ∈ C[x], which is monic, so by Proposition 5.15, ξi, ηj ∈ K are
integral over C. Since the integral elements form a ring and all other coefficients of f (g)
are polynomials in the ξi (ηj), the coefficients of f (g) lie in the integral closure of C in K,
which is C since C is integrally closed. That is, f, g ∈ C[x].

Remark 0.5. The next proposition is the same as the previous, except that the hypothesis
of being an integral domain is removed.

Proposition 0.6 (Exercise 5.8ii). Let A ⊂ B be a subring and let C be the integral closure
of A in B. Let f, g be monic polynomials in B[x] so that fg ∈ C[x]. Then f, g ∈ C[x].

Proof. Not assigned.

Lemma 0.7 (for Exercise 5.9). Let A ⊂ C be rings. If C is integral over A, then C[x] is
integral over A[x].

Proof. Let f ∈ C[x]. To show that f is integral over A[x], using the criterion of Propo-
sition 5.1 of Atiyah-MacDonal, it suffices to show that A[x, f ] is contained in a finitely
generated A[x]-module. Let c1, . . . , cn be the coefficients appearing in f . Then A[x, f ] ⊂
A[x, c1, . . . , cn] = A[x][c1, . . . , cn]. Since ci are all integral over A, by the same criterion,
A[c1, . . . , cn] is a finitely generated A-module. Thus A[x][c1, . . . , cn] is a finitely generated
A[x]-module.

Proposition 0.8 (Exercise 5.9). Let A ⊂ B be a subring, and let C be the integral closure
of A in B. Then C[x] is the integral closure of A[x] in B[x].

Proof. By Lemma 0.7, C[x] is integral over A[x], so it suffices to show that any element
of B[x] integral over A[x] lies in C[x]. Let f ∈ B[x] be integral over A[x], so we have an
equation

fm + g1f
m−1 + . . .+ gm = 0

with gi ∈ A[x]. Let r = max {m, deg g1, . . . , deg gn}, and set f1 = f − xr. Substituting
f1 − xr into our previous equation, we obtain

(f1 − xr)m + g1(f1 − xr)n−1 + . . .+ gm = 0

which we then expand as a polynomial in f1, to obtain

fm1 + h1f
m−1
1 + . . .+ . . . hm = 0 (0.1)
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with hi ∈ A[x]. In particular,

hm = (xr)m + g1(xr)m−1 + . . .+ gm ∈ A[x]

Rearranging equation 0.1, we obtain

hm = −fm1 − h1f
m−1
1 + . . .− hm−1f1 = −f1

(
fm−1

1 + h1f
m−2
1 + . . .+ hm−1

)
Note that −f1 and fm−1

1 +h1f
m−2
1 + . . .+hm−1 are monic polynomials in B[x] with product

in A[x] ⊂ C[x]. Hence proposition 0.6 applies, so we conclude that f1 ∈ C[x]. In particular,
f = f1 − xr ∈ C[x]. Thus C[x] is the integral closure of A[x] in B[x].

Proposition 0.9 (Exercise 5.10i). Let f : A→ B be a ring homomorphism, and
f ∗ : specB → specA the induced map. Among the following statements,
(1) =⇒ (2) ⇐⇒ (3).

1. f ∗ is a closed map.

2. f has the going-up property.

3. Let q ∈ specB, and p = f ∗(q). Then f ∗ : spec(B/q)→ spec(A/p) is surjective.

Proof. I don’t know how to prove this.

Proposition 0.10 (Exercise 5.10ii). Let f : A→ B be a ring homomorphism, and
f ∗ : specB → specA the induced map. Among the following statements,
(1) =⇒ (2) ⇐⇒ (3).

1. f ∗ is an open map.

2. f has the going-down property.

3. Let q ∈ specB, and p = f ∗(q). Then f ∗ : spec(Bq)→ spec(Aq) is surjective.

Proof. I don’t know how to prove this.

Proposition 0.11 (Exercise 5.12i). Let G be a finite group of automorphisms of a ring A,
and let AG be the subring of G-invariants. Then A is integral over AG.

Proof. For a ∈ A, the monic polynomial

f(x) =
∏
σ∈G

(x− σa)

has a as a root. Note that the G-action on A induces an action on A[x] by fixing x and
acting on the coefficients, so A[x]G = AG[x]. We claim that f ∈ AG[x], since for τ ∈ G,

τf(x) = τ
∏
σ∈G

(x− σa) =
∏
σ∈G

(x− τσa) =
∏
σ∈G

(x− σa) = f

Thua a is integral over AG.
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Proposition 0.12 (Exercise 5.12ii). Let G be a finite group of automorphisms of a ring A,
and let AG be the subring of G-invariants. Let S ⊂ A be a multiplicative set which is stable
under G, that is, σ(S) ⊂ S for σ ∈ G. The G-action on A extends to a G-action on S−1A
via

σ
(a
s

)
=
σa

σs

Let SG = S ∩ AG. Then we have an isomorphism

(SG)−1AG → (S−1A)G
a

s
7→ a

s

Proof. We check that the G-action on S−1A is well defined. Suppose a
s

= a′

s′
. We need to

verify that σ
(
a
s

)
= σ

(
a′

s′

)
. By the previous equality, ∃t ∈ S so that t(as′ − a′s) = 0. Then

since σ is an automorphism and S is stable under σ

(σt)
(

(σa)(σs′)− (σa′)(σs)
)

= 0

thus σ
(
a
s

)
= σ

(
a′

s′

)
, so σ is well-defined. It is then clear that σ is an automorphism of S−1A,

and this extends the G-action in the sense that σ
(
a
1

)
= σa

1
. (Recall that A → S−1A may

not be injective if S contains zero divisors, so we cannot in general regard A as a subring of
S−1A.)

Before we verify the isomorphism (SG)−1A ∼= (S−1A)G, note that SG is a multiplicative
set, since for s, t ∈ SG, we have s, t ∈ S =⇒ st ∈ S, and

s, t ∈ AG =⇒ σs = s, σt = t =⇒ σ(st) = (σs)(σt) = st =⇒ st ∈ AG

If a
s
∈ (SG)−1AG, where a ∈ AG, s ∈ SG, then by definition of the group action on S−1A

we have σ
(
a
s

)
= σa

σs
= a

s
, so a

s
∈ (S−1A)G. It is clear that the map is well-defined and is a

homomorphism.
First, we show it is injective. Let a

s
∈ (SG)−1AG be in the kernel, so a

s
= 0

1
in (S−1A)G.

Then there exists t ∈ S so that ta = 0. Taking t′ =
∏
σ∈G

σt, so that t′ ∈ SG, we also get

t′a = 0, which says that a
s

= 0
1

in (SG)−1AG.
Now we show that it is surjective. Let a

s
∈ (S−1A)G, so σa

σs
= a

s
. We meed to fine

a′ ∈ AG, s′ ∈ SG so that a
s

= a′

s′
. First, note that

a

s
=

(∏
σ 6=1

σs

)
a∏

σ∈G

σs

where the denominator is in SG, so we may assume s ∈ SG, that is, σa
s

= a
s
. So for σ ∈ G,

there is tσ so that
tσ(σa− a) = 0
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Set t =
∏
σ∈G

tσ, so t(σa− a) = 0 for all σ ∈ G. Set v =
∏
σ∈G

σt, so v(σa− a) = 0 for all σ ∈ G,

and v ∈ SG. Then

va = v(σa) = (σv)(σa) = σ(va) =⇒ va ∈ AG

Thus a
s

= va
vs

, where va ∈ AG and vs ∈ SG. Thus our map is surjective. This completes the
proof that our map is an isomorphism.

Proposition 0.13 (Exercise 5.13). Let A be a ring, and G a finite group of automophisms of
A. Let p ⊂ AG be a prime ideal, and let P be the set of prime ideals of A whose contraction
is p. Then G acts transitively on P . In particular, P is finite.

Proof. First, it is clear that G acts on P , since G is a group of automorphisms of A. Let
q1, q2 ∈ P , and x ∈ q1. Then ∏

σ∈G

σx ∈ q1 ∩ AG ⊂ q2

Then since q2 is prime, σx ∈ q2, or equivalently x ∈ σ−1q2, for some σ ∈ G. Thus

q1 ⊂
⋃
σ∈G

σ−1q2 =
⋃
σ∈G

σq2

Then by Proposition 1.11 of Atiyah-MacDonald, q1 ⊂ σq2 for some σ ∈ G. Then since q1, σq2

are both ideals whose contraction is p, by Corollary 5.9 of Atiyah-MacDonald, q1 = σq2.
Thus G acts transively on P . Thus for any q ∈ P ,

P = {σq : σ ∈ G}

which is finite since G is finite.

Proposition 0.14 (Exercise 5.14). Let A be an integrally closed domain with fraction field
K, and let L be a finite Galois extension of K. Let G = Gal(L/K), and let B be the integral
closure of A in L. Then σB = B for all σ ∈ G, and A = BG.

Proof. Let β ∈ B. Since β is integral over A, it satisfies a monic polynomial with coefficients
in A,

βn + an−1β
n−1 + . . .+ a0 = 0 ai ∈ A

Applying σ ∈ G to this equation, the ai are fixed, since A ⊂ K, so we obtain

(σβ)n + an−1(σβ)n−1 + . . .+ a0 = 0

which is again a monic polynomial with coefficients in A, so σβ is integral over A, and
σB ⊂ B. Thus σβ ∈ B. Performing an identical argument by applying σ−1 instead show
that B ⊂ σB, hence B = σB.

We know A ⊂ B and A ⊂ K = LG, so clearly A ⊂ BG. For the other inclusion, any
β ∈ BG is in LG = K = Frac(A), and since β ∈ B, β is integral over A. Since A is integrally
closed in K, β ∈ A, hence BG ⊂ A. Thus A = BG.
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Proposition 0.15 (roughly a converse to Exercise 5.14). Let A be an integral domain with
fraction field K, and let L be a finite Galois extension of K. Let G = Gal(L/K), and let B
be the integral closure of A in L. If A = BG, then A is integrally closed.

Proof. We need to show that if α ∈ K is integral over A, then α ∈ A. Let α ∈ K be
integral over A. Since α ∈ L and α is integral over A, α ∈ B. By Galois theory, K = LG so
α ∈ B ∩ LG = BG. By hypothesis, A = BG, so α ∈ A.

Proposition 0.16 (Extra exercise, part 1). Let n ∈ Z≥1, A = C[x, y], and let ζ be a
primitive nth root of unity. We define a C-linear action of G = Z/nZ〈σ〉 on A by

σx = ζx σy = ζ−1y

Let B = C[u, v, w]/(uv − wn). The C-algebra homomorphism defined by

φ : C[u, v, w]→ AG u 7→ xn, v 7→ yn, w 7→ xy

is surjective and has kernel (uv−wn), so it induces an isomorphism of C-algebras B ∼= AG.

Proof. First, note that φ is well defined, since xn, yn, xy ∈ AG. First, we show that φ is
surjective. Let f ∈ AG ⊂ C[x, y],

f(x, y) = a0 + a1x+ a2y + a3x
2 + . . . = a0 + a1ζx+ a2ζ

−1y + a3ζ
2x2 + . . .

Matching up the like terms, we obtain equations

a1 = ζa1 a2 = ζ−1a2 a3 = ζ2a3 . . .

which imply that any coefficients except for 1, xn, yn, xy are zero. Thus AG = C[xn, yn, xy],
so φ is surjective. Now we consider the kernel. Clearly, uv − wn ∈ kerφ, since

φ(uv − wn) = φ(u)φ(v)− φ(w)n = xnyn − (xy)n = 0

The kernel must be an ideal of C[u, v, w], and C[u, v, w] is PID, so kerφ is a principal ideal,
so it must be generated by somthing dividing uv − wn. But uv − wn is irreducible, so
kerφ = (uv − wn). Thus by the first isomoprhism theorem, we get an induced isomorphism
B ∼= AG.

Proposition 0.17 (Extra exercise, part 2). Let B = C[u, v, w]/(uv − wn). Then B is
integrally closed (in its own fraction field).

Proof. It is clear that B is an integral domain, since uv − wn is irreducible, or alternately,
via the isomorphism above, B is (isomorphic to) a subring of the integral domain C[x, y].

Let A = C[x, y] and G be as in the previous proposition, and we use the isomorphism
to identify B with AG. Note that Frac(A) = C(x, y). By Proposition 0.12, Frac(B) =
Frac(A)G = C(x, y)G. By Proposition 0.11, A is integral over B = AG. We know that any
polynomial ring over a field is integrally closed, so A is the integral closure of B in L. Then
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all the hypotheses of Proposition 0.15 are satisfied, so B is integrally closed. We depict the
situation below in two alternate notations.

Frac(A) C(x, y)

Frac(B) A C(x, y)G C[x, y]

B C[x, y]G

finite Galois field of fractions

field of fractions
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