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Exercises: 2.12, 5.1, 5.4, 5.8, 5.9, 5.10, 5.12, 5.13, 5.14, 5.16 of Atiyah-MacDonald, and one
extra exercise from Professor Pappas

Proposition 0.1 (Exercise 2.12). Let M be a finitely generated A-module and ¢ : M — A"
a surjective homomorphism. Then ker ¢ is finitely generated.

Proof. Since A" is a free, and hence projective, A-module, the short exact sequence
0—>ker¢p - M — A" =0

splits, so M = A™ @ ker ¢. Since M and A™ are finitely generated, so is ker ¢. m

Proof. (Alternate proof of Let eq,...,e, be a basis of A", and let uy,...,u, € M so that
¢(u;) = e;. Let N C M be the submodule generated by wy,...,u,. Since M/ker¢ = A",
every element of M can be written as linear combination of the u; plus some element of ¢,
thus M = N + ker ¢. This sum is direct since if z =) a;u; € N Nker ¢, then

¢($):Zaiei20 — a; =0 Vi — x=0
since eq,...,e, is a basis of A,. Thus M = N @ ker ¢. Since M, N are finitely generated,
ker ¢ is finitely generated. m
Recall for the next proposition that the sets
V(I)={p €specA:ICp}
are the closed sets of the Zariski topology on spec A, where I C A is any ideal.

Lemma 0.2 (for Exercise 5.1). Let f : A — B be a ring homomorphism, with induced map
f* :spec B — spec A. For any ideal I C B,

V() c V(1)

with equality if f is integral.



Proof. The first inclusion is immediate: if p € f* (V(1)), then I C p, so f~(I) C f~(p).

Now we show the reverse inclusion, assuming f is integral. Let p € V(f~'(I)), so
S7YI) C p. We need to show that p € f*(V(I)), so we need to find q € spec B so that
f*(q) = f~'(q) = p. Consider the factorization

A—Ly f4) —— B

If a € ker f, then f(a) = 0 € I, so a € f~1(I) C p. Thus ker f C p, so by the ideal
correspondence (Proposition 1.1 of Atiyah-MacDonald) and a remark on page 9 of Atiyah-
MacDonald, p corresponds to a prime ideal p’ of f(A), with f~1(p’) = p. Since B is integral
over f(A), by the going-up theorem (Theorem 5.10 of Atiyah-MacDonald), there exists
q € spec B so that qN f(A) = p’. Then

FH@ = (anfa) = 116 = v

We include the following commutative diagram as a visual aid.

o —— I

]

Proposition 0.3 (Exercise 5.1). Let f : A — B be an integral homomorphism of rings.
Then f*:spec B — spec A is a closed mapping.

Proof. Any closed subset of spec B is of the form V(I), and by Lemma , the image of
V(I) under f*is V(f~1(I)), which is closed. O

Exercise 5.4. Let A C B be a subring, with B integral over A. Let n C B be a maximal
ideal, and m = A N n the corresponding maximal ideal of A. In general, it is not the case
that B, is integral over A,. We provide an explicit counterexmple, following the hint in
Atiyah-MacDonald.

Let k be a field, B = k[z], A = k[z*> —1]. Let n be the maximal ideal generated by (z—1),
and m = ANn. Note that m = (22 — 1), which is the unique maximal ideal of A, so A, = A.
We can write B, as ;

Bn:{gek(x)

In particular, B, # B. We have inclusions

<x—1>+g}

An =A< B=k[z] — B,

Since k[z] is integrally closed (see comment on pages 62-63 of Atiyah-MacDonald), B, cannot
be integral over k[z]. Thus B, cannot be integral over Ay,.



Proposition 0.4 (Exercise 5.81). Let A be a subring of an integral domain B and let C' be
the integral closure of A in B. Let f,g be monic polynomials in Blzx] so that fg € C|x].
Then f,g € Clx].

Proof. Let f,g € Blz| be monic with fg € C[z]. Let K be the fraction field of B, and
let K be an algebraic closure of K. Note that by Corollary 5.5 of Atiyah-MacDonald, C' is
integrally closed in K. Over K, f,g split into linear factors,

f@) =1l«-4% 9@ =]]@-n)

1 J

Then &;,n; are roots of fg € C[z], which is monic, so by Proposition 5.15, &;,n; € K are
integral over C. Since the integral elements form a ring and all other coefficients of f (g)
are polynomials in the & (1;), the coefficients of f (g) lie in the integral closure of C' in K,
which is C since C' is integrally closed. That is, f,g € C[z]. O

Remark 0.5. The next proposition is the same as the previous, except that the hypothesis
of being an integral domain is removed.

Proposition 0.6 (Exercise 5.8ii). Let A C B be a subring and let C be the integral closure
of Ain B. Let f,g be monic polynomials in Blzx] so that fg € Clx]. Then f,g € Clx].

Proof. Not assigned. n

Lemma 0.7 (for Exercise 5.9). Let A C C be rings. If C is integral over A, then C[z] is
integral over Alx].

Proof. Let f € C[z]. To show that f is integral over A[z], using the criterion of Propo-
sition 5.1 of Atiyah-MacDonal, it suffices to show that A[z, f] is contained in a finitely
generated A[x]-module. Let ¢q,...,¢, be the coefficients appearing in f. Then Alx, f] C

Alx,c1,...,cn] = Alx]ler, ..., cq]. Since ¢; are all integral over A, by the same criterion,
Alcy, ..., ¢ is a finitely generated A-module. Thus A[z|[ci, ..., ¢,] is a finitely generated
Alz]-module. O

Proposition 0.8 (Exercise 5.9). Let A C B be a subring, and let C' be the integral closure
of A in B. Then C|x] is the integral closure of Alz] in Blz].

Proof. By Lemma 0.7, C[x] is integral over Alz], so it suffices to show that any element
of B[z| integral over A[z] lies in C[z]. Let f € B[z] be integral over Alx], so we have an
equation

g™ . 4 gn=0

with g; € Alzx|. Let r = max{m,deggi,...,degg,}, and set f; = f — 2". Substituting
f1 — 2" into our previous equation, we obtain

(fi=a" )"+ g(fi =)+ g =0
which we then expand as a polynomial in f;, to obtain

4+ k=0 (0.1)

3



with h; € A[z]. In particular,
Bn = (7)™ 4+ g1(z")™ ... 4 g € Al7]

Rearranging equation 0.1, we obtain
b= =7 = B f7 7 = o= = f (P A R )

Note that —f; and f{" '+ hy f{"* > +...+ h,,_1 are monic polynomials in Blx] with product
in A[z] C C[z]. Hence proposition applies, so we conclude that f; € C[z]. In particular,
f = fi—a" € Clz]. Thus C[z] is the integral closure of A[z] in B[z]. O

Proposition 0.9 (Exercise 5.10i). Let f: A — B be a ring homomorphism, and
f* :spec B — spec A the induced map. Among the following statements,
(1) = (2) < (3).

1. f* is a closed map.

2. f has the going-up property.

3. Let q € spec B, and p = f*(q). Then f* :spec(B/q) — spec(A/p) is surjective.
Proof. 1T don’t know how to prove this. m

Proposition 0.10 (Exercise 5.10ii). Let f : A — B be a ring homomorphism, and
f* :spec B — spec A the induced map. Among the following statements,
(1) = (2) <= (3).

1. f* is an open map.
2. f has the going-down property.
3. Let q € spec B, and p = f*(q). Then f* : spec(By) — spec(Ay) is surjective.
Proof. 1T don’t know how to prove this. O

Proposition 0.11 (Exercise 5.12i). Let G be a finite group of automorphisms of a ring A,
and let A® be the subring of G-invariants. Then A is integral over AC.

Proof. For a € A, the monic polynomial

f(x) =[] (@~ oa)

ceG

has a as a root. Note that the G-action on A induces an action on A[z]| by fixing = and
acting on the coefficients, so A[x]¢ = A%[z]. We claim that f € A%[z], since for 7 € G,

7f(x) :TH(x—Ja) = H(x—raa) = H(x—aa) =f

ceG ceG oelG

Thua a is integral over A%, m



Proposition 0.12 (Exercise 5.12ii). Let G be a finite group of automorphisms of a ring A,
and let A be the subring of G-invariants. Let S C A be a multiplicative set which is stable
under G, that is, (S) C S for o € G. The G-action on A extends to a G-action on S~'A

via
a oa

ol—-)=—

s os

Let S = SN A%. Then we have an isomorphism

(597149 = (574 Ll

Proof. We check that the G-action on S~'A is well defined. Suppose ¢ = 2—: We need to
verify that o (%) =0 (‘s‘—,,) By the previous equality, 3t € S so that t(as’ — a’s) = 0. Then
since ¢ is an automorphism and S is stable under o

(ot) ((aa)(as') - (cm')(as)) =0

thus o (%) =0 (‘;—:), so o is well-defined. It is then clear that o is an automorphism of S~ A,
and this extends the G-action in the sense that o (¢) = 2. (Recall that A — S™'A may

not be injective if S contains zero divisors, so we cannot in general regard A as a subring of
S71A)

Before we verify the isomorphism (S%)"1A = (S71A4)Y note that S¢ is a multiplicative
set, since for s,t € S¢, we have s,t € S = st € 9, and

s,;t € A% = ogs=s,0t =t = o(st) = (0s)(0t) = st = st € A9

If ¢ € (S) 'A%, where a € A% s € S, then by definition of the group action on S~'A
we have 0 (2) = 22 = 2 50 ¢ € (S7'A)C. It is clear that the map is well-defined and is a

gs s’

homomorphism.

First, we show it is injective. Let ¢ € (S%)7*A% be in the kernel, so ¢ = ¢ in (S71A)C.

Then there exists ¢t € S so that ta = 0. Taking t' = H ot, so that ¢ € S¢, we also get
oeG
t'a = 0, which says that ¢ =% in (S9)~1A“.
Now we show that it is surjective. Let ¢ € (S7'A)%, so 2¢ = 2. We meed to fine

a € A% s € 5S¢ so that ¢ = Z—: First, note that

where the denominator is in S, so we may assume s € S, that is, 2 =2 Sofor o € G,
there is t, so that
to(ca—a)=0



Set t = Ht"’ sot(ca—a)=0forallc € G. Set v = Hat, sov(ca—a)=0forall o € G,

oeG oeG
and v € S¢. Then

va = v(oa) = (ov)(ca) = o(va) = va € A®

Thus ¢ = 2%, where va € A% and vs € S. Thus our map is surjective. This completes the
proof that our map is an isomorphism. O

Proposition 0.13 (Exercise 5.13). Let A be a ring, and G a finite group of automophisms of
A. Letp C A% be a prime ideal, and let P be the set of prime ideals of A whose contraction
is p. Then G acts transitively on P. In particular, P is finite.

Proof. First, it is clear that G acts on P, since GG is a group of automorphisms of A. Let
q1,92 € P, and x € q;. Then
[[ozcaina®ca

ceG

Then since gy is prime, ox € qq, or equivalently z € 0~ 1qy, for some o € G. Thus

nclJotn=Jow

ceG ceG

Then by Proposition 1.11 of Atiyah-MacDonald, q; C oqs for some o € G. Then since q1, 0qs
are both ideals whose contraction is p, by Corollary 5.9 of Atiyah-MacDonald, q; = oqs.
Thus G acts transively on P. Thus for any q € P,

P={oq:0€G}
which is finite since G is finite. O

Proposition 0.14 (Exercise 5.14). Let A be an integrally closed domain with fraction field
K, and let L be a finite Galois extension of K. Let G = Gal(L/K), and let B be the integral
closure of A in L. Then cB = B for all o € G, and A = BS.

Proof. Let 5 € B. Since f3 is integral over A, it satisfies a monic polynomial with coefficients
in A,
ﬁn+anflﬁn71+---+aozo aiEA

Applying o € G to this equation, the a; are fixed, since A C K, so we obtain
(O'ﬂ)n + an,l(aﬁ)"fl +...+ay= 0

which is again a monic polynomial with coefficients in A, so of is integral over A, and
oB C B. Thus o3 € B. Performing an identical argument by applying o~! instead show
that B C 0B, hence B = 0B.

We know A C B and A C K = L%, so clearly A ¢ BY. For the other inclusion, any
B € B%isin LY = K = Frac(A), and since 3 € B, 3 is integral over A. Since A is integrally
closed in K, 8 € A, hence B¢ C A. Thus A = BY. O



Proposition 0.15 (roughly a converse to Exercise 5.14). Let A be an integral domain with
fraction field K, and let L be a finite Galois extension of K. Let G = Gal(L/K), and let B
be the integral closure of A in L. If A = B, then A is integrally closed.

Proof. We need to show that if & € K is integral over A, then a € A. Let a € K be
integral over A. Since a € L and « is integral over A, a € B. By Galois theory, K = L% so
a € BN LY = B%. By hypothesis, A = BY so a € A. O

Proposition 0.16 (Extra exercise, part 1). Let n € Zs1, A = Clz,y], and let ¢ be a
primitive nth root of unity. We define a C-linear action of G = Z/nZ{c) on A by
or=Cr  oy=(""y
Let B = Clu,v,w]/(uv —w"). The C-algebra homomorphism defined by
¢ : Clu,v,w] — A ur 2", vy, we Yy
is surjective and has kernel (uv — w"), so it induces an isomorphism of C-algebras B = AC.

Proof. First, note that ¢ is well defined, since z",y", vy € A®. First, we show that ¢ is
surjective. Let f € AY C Clz, ],

f(z,y) = ap + a1x + agy + azx® + ... = ag + ar1(x + ax( "ty + asCP2® + ...
Matching up the like terms, we obtain equations
_ 1 2
a; = Cay as = (¢ as az = ( as

which imply that any coefficients except for 1,z", y", xy are zero. Thus AY = C[z", y", zy],
so ¢ is surjective. Now we consider the kernel. Clearly, uv — w™ € ker ¢, since

B(uv —w") = B(u)d(v) — d(w)" = 2"y" — (zy)" = 0

The kernel must be an ideal of Clu, v, w], and Clu,v,w] is PID, so ker ¢ is a principal ideal,
so it must be generated by somthing dividing uv — w™. But wv — w" is irreducible, so
ker ¢ = (uv — w™). Thus by the first isomoprhism theorem, we get an induced isomorphism
B~ A“. O

Proposition 0.17 (Extra exercise, part 2). Let B = Clu,v,w]/(uv — w™). Then B is
integrally closed (in its own fraction field).

Proof. 1t is clear that B is an integral domain, since uv — w™ is irreducible, or alternately,

via the isomorphism above, B is (isomorphic to) a subring of the integral domain Clz, y].
Let A = C[z,y] and G be as in the previous proposition, and we use the isomorphism
to identify B with A®. Note that Frac(A) = C(z,y). By Proposition [0.12] Frac(B) =
Frac(A)¢ = C(x,y)¢. By Proposition , A is integral over B = AY. We know that any
polynomial ring over a field is integrally closed, so A is the integral closure of B in L. Then



all the hypotheses of Proposition [0.15| are satisfied, so B is integrally closed. We depict the
situation below in two alternate notations.

Frac(A

/ \ finite GV w of fractions

Frac(B C(z, Clz,y]

\ / field of fractlok /
} G



